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Detection of human influence on twentieth-century
precipitation trends
Xuebin Zhang1, Francis W. Zwiers1, Gabriele C. Hegerl2, F. Hugo Lambert3, Nathan P. Gillett4, Susan Solomon5,
Peter A. Stott6 & Toru Nozawa7

Human influence on climate has been detected in surface air
temperature1–5, sea level pressure6, free atmospheric temperature7,
tropopause height8 and ocean heat content9. Human-induced
changes have not, however, previously been detected in precipita-
tion at the global scale10–12, partly because changes in precipitation
in different regions cancel each other out and thereby reduce the
strength of the global average signal13–19. Models suggest that
anthropogenic forcing should have caused a small increase in
global mean precipitation and a latitudinal redistribution of pre-
cipitation, increasing precipitation at high latitudes, decreasing
precipitation at sub-tropical latitudes15,18,19, and possibly changing
the distribution of precipitation within the tropics by shifting the
position of the Intertropical Convergence Zone20. Here we com-
pare observed changes in land precipitation during the twentieth
century averaged over latitudinal bands with changes simulated by
fourteen climate models. We show that anthropogenic forcing has
had a detectable influence on observed changes in average precip-
itation within latitudinal bands, and that these changes cannot be
explained by internal climate variability or natural forcing. We
estimate that anthropogenic forcing contributed significantly to
observed increases in precipitation in the Northern Hemisphere
mid-latitudes, drying in the Northern Hemisphere subtropics and
tropics, and moistening in the Southern Hemisphere subtropics
and deep tropics. The observed changes, which are larger than
estimated from model simulations, may have already had signifi-
cant effects on ecosystems, agriculture and human health in
regions that are sensitive to changes in precipitation, such as the
Sahel.

Weusedmonthly precipitation observations over global land areas
from the most recent version of the Global Historical Climatology
Network (GHCN)21 to analyse precipitation trends in two twentieth-
century periods (1925–1999 and 1950–1999), during which obser-
vational data are considered to be sufficient to describe global-scale
land precipitation change. This data set has been carefully quality
controlled. Previous studies of external influence on global precip-
itation changes10–12 used a gridded data set22 based on an earlier
version of the GHCN that was less complete during the last few years
of the twentieth century; we obtained similar results when using this
original data set. We focused on the region 40u S–70uN because
observational coverage elsewhere is limited.

We compared observed trends to those simulated by a large num-
ber of climate models to determine whether observed changes over
the two twentieth-century periods have been caused by external
influences on the climate system. The climate simulations were
obtained from the multi-model data archive at PCMDI (http://
www-pcmdi.llnl.gov/ipcc/about_ipcc.php) and from modelling

centres directly. We considered three groups of twentieth-century
simulations. One group (ANT) includes 27 simulations conducted
with 8 models forced with estimates of historical anthropogenic for-
cing only, including greenhouse gases and sulphate aerosols. A sec-
ond group (ALL) includes 50 simulations conducted with 10 models
forced with estimates of both historical anthropogenic and natural
external forcing, including volcanic aerosols and solar irradiance
change. A third group (NAT4) includes 15 simulations conducted
with 4 models forced with natural external forcing only. Slightly
different configurations of historical forcing were used by different
modelling centres12. The make-up of each group and the number of
simulations used from each model is summarized in Supplementary
Table 1. Four models (ECHO-G, HadCM3, MIROC, PCM) contrib-
uted simulations to all three groups; the subsets of ANT and ALL
simulations from these models are referred to as ANT4 and ALL4
respectively.

We analysed trends in annual zonal mean precipitation anomalies
expressed relative to 1961–90. Trends in observed and simulated
precipitation were computed and compared quantitatively using
the ‘optimal fingerprint’ method23,24, a regression procedure that
has been used in many previous detection studies1.

Linear precipitation trends from observations and the average of
multiple model simulations for 1925–1999 (Figs 1 and 2) exhibit
important areas of consistency in the spatial distribution of precip-
itation change. Both observations and models show that precipita-
tion increased in the Southern Hemisphere deep tropics and
subtropics, decreased in the Northern Hemisphere tropics and sub-
tropics, and increased in the Northern Hemisphere poleward of
50uN. We note an important difference, however: observations
suggest a slight upward trend in zonal precipitation between about
20–40uN, while the mean ALL simulation shows a slight downward
trend (Fig. 1a). Also we note that uncertainty in model-simulated
trends is high: the range of trends from available simulations includes
zero for all latitudinal bands, indicating that the simulated change in
individual latitude bands could be explained by internal variability.
However, the pattern of precipitation change across different lati-
tudes may still allow detection. The observed latitudinal pattern of
precipitation trends correlates well with the all-forcings multi-model
simulated pattern (correlation 0.83 for the 75-year trend, Fig. 1a,
compared to 0.69 for the ANT simulations, Fig. 1b, and 0.02 for
the NAT4 simulations, Fig. 1c). We obtained similar results from
the 50-year trends (Fig. 1d–f). Differences in zonal precipitation
trends between different models are greater than those between indi-
vidual ensemble members from the same model, although robust
physical characteristics of rainfall changes can be found in the ALL
and ANT multi-model means15.
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We estimated the combined effect of anthropogenic and natural
external forcing on observed precipitation trends by regressing the
observed trends onto the trends simulated in ALL simulations.
Estimates of the individual influences of anthropogenic and natural
forcing were similarly obtained by using the ANT and NAT4 simu-
lation trend patterns respectively. The regression scaling factors that
best match ALL and ANT simulation trends to the observed trends
are shown in Fig. 3. The response to ALL, or to ANT alone, was
detected in the observed trends in both periods; the response to
natural forcing alone was not detected.

To separate the contributions from natural and anthropogenic
forcing to observed trends, two-signal attribution analyses must be
used2,3. Using combinations of two signal patterns from the ALL,
ANT and NAT4 simulations in two-way regressions, we also found
that the response to anthropogenic forcing is separable from the
response to natural forcing and internal variability. The ANT and
NAT responses were detected in the observed 50-year trends when
ALL and ANT mean responses were used to estimate the contribu-
tions of ANT and NAT to trends (Fig. 3, right hand panel; see also
Supplementary Fig. 7). The response to anthropogenic and natural
forcings were also detected using the ALL4 and ANT4 ensembles

(Supplementary Fig. 7), indicating that the response to anthro-
pogenic forcing can be reliably separated from the effects of natural
forcing and internal variability, although the residual consistency
test25 failed in the latter case, indicating that internal variabilitymight
be underestimated, or that uncaptured aspects of the forced response
have increased residual variability. This is consistent with an earlier
study detecting volcanic influence on globally averaged land precip-
itation10. The estimated contribution of natural forcing to observed
zonal precipitation trends is small in relation to the estimated con-
tribution from anthropogenic forcing. From this and the separate
detection of anthropogenic influence in a two-way analysis we con-
clude that the detected changes in observed land rainfall are largely in
response to anthropogenic forcing.

A series of considerations show that the detection of an anthro-
pogenic influence on precipitation is robust.While uncertainty in the
magnitude of the observationally based estimate of precipitation
change is considerable, there is little uncertainty in the sign of trend
(see Supplementary Information). Thus sampling uncertainty is
unlikely to have altered the observed pattern of latitudinal moisten-
ing and drying and is thus unlikely to nullify our detection results,
which are based on the agreement in the observed and simulated
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Figure 1 | Comparison between observed (solid black) and simulated zonal
mean land precipitation trends for 1925–1999 (left) and 1950–1999
(right). Black dotted lines indicate themulti-modelmeans from all available
models (ALL in a and d, ANT in b and e, and NAT as represented by
ALL–ANT in c and f), and black dashed-dotted lines those from the subset of

four models that simulated the response to each of the forcing scenarios
(ALL4, ANT4 and NAT4). The model-simulated range of trends is shaded.
Black dashed lines indicate ensemble means of ALL and ANT simulations
that have been scaled (SALL and SANT) to best fit the observations based on
a one-signal analysis. Coloured lines indicate individual model mean trends.
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patterns of trends. Furthermore, our results are robust to the use of a
data set that is based on less-complete observations and is gridded
differently22. Our results are also robust to the use of signal patterns
estimated from subsets of models, although, as expected, the robust-
ness of detection deteriorates with decreasing number of models
being used (not shown). Multi-model estimates of the pattern of
external forcing response in precipitation are probably less suscept-
ible tomodel error than are singlemodel estimates26. The structure of
the multi-model simulated fingerprint is consistent with our under-
standing of the mechanisms of precipitation response to anthro-
pogenic forcing. It is expected that wet tropical regions would

become wetter and dry regions drier if there were an increase in
tropospheric temperature from anthropogenic forcing but no change
in lower-tropospheric relative humidity or flow15. The apparent shift
in the Intertropical Convergence Zone is also consistent with hemi-
spheric asymmetry in indirect aerosol forcing20, although indirect
aerosol forcing is not needed in all models to produce subtropical
drying over land15.

Because the observed record is relatively short andmay be affected
by the response to external forcing, we used climate models to estim-
ate the variations in zonal rainfall trends expected from internal
climate variability. This model-based internal variability estimate is
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Figure 2 | 1925–1999 changes in observed and simulated precipitation
anomalies. Time series (left panel) of observed annual zonal mean
precipitation anomalies in 10u latitude bands (thin black trace) together with
ensemble mean annual zonal mean precipitation anomalies in the 50
available ALL simulations (thin blue trace). Straight dashed black and red
lines indicate the trends. Green (or yellow) shading identifies latitude bands

with increasing (or decreasing) trends in both observations andmodels; grey
shading indicates disagreement between observed and simulated trends. The
map (right panel) indicates the different 10u latitude bands and whether
trends agree in sign. Areas with insufficient data are shown in white. Only
land precipitation data are used.
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Figure 3 | Results from detection and attribution analysis of zonal
precipitation anomalies. Scaling factors and their 5–95%uncertainty ranges
are given from one-signal fingerprint detection analyses for ALL, ANT and
NAT4 forced signals as well as subsets of four models, ALL4 and ANT4 (left
panel) and from two-signal fingerprint detection analyses (right panel) for
ANT and NAT forced signals based on the ALL and ANT ensembles (see

Fig. 1) The residual consistency test25 passes except where indicated by open
circles (test passes after doubling the estimate of internal variability) or
closed circles (indicating that the test does not pass even after doubling).
Dashed error bars correspond to 5–95% uncertainty ranges when the model
simulated variance is doubled.
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smaller than the observationally based estimate, particularly in the
tropics, but a substantial part of the discrepancy may be the result of
scale mismatch in the observational data (see Supplementary
Information). Our finding of a detectable external influence on zonal
precipitation trend holds when doubling the model-derived internal
variance estimate, indicating that our finding is robust to possible
moderate under-simulation of rainfall variability.

While the detection and attribution of an anthropogenic influence
on zonal precipitation changes is robust, there are discrepancies in
the magnitude of the changes. The multi-model mean significantly
underestimates observed trends (Figs 1 and 3; see also ref. 27), con-
sistent with the finding that the multi-model response to volcanic
eruptions in global mean land rainfall is undersimulated10. The trop-
ical mean precipitation responses simulated by atmospheric models
to tropical oceanwarming during El Niño events are also weaker than
observed, despite correct simulation of the observed change in atmo-
spheric column integrated water vapour28,29. A similar mechanism
may be affecting tropical and subtropical zonal land rainfall changes
here. Observational uncertainty might also have contributed to the
discrepancy between observed and simulated trends. Furthermore,
the statistical significance of the mismatch might be overestimated
if the internal variability of precipitation is underestimated (Fig. 3).
If the finding that observed changes are larger than simulated is
robust, then projections may also underestimate future precipitation
changes. However, some models in the ANT and ALL ensembles do
show response features, particularly in the tropics, that are as large as
those observed (see Fig. 1), but these are situated somewhat differ-
ently latitudinally, impeding detection and damping the amplitude
of themulti-model pattern of response. Furthermore, different mod-
els contribute to different aspects of the multi-model mean response.
Some models show little tropical response but increasing high-
latitude precipitation, while others show a more realistic tropical
and subtropical response but fail to increase high-latitude precipita-
tion (see Fig. 1).

Overall, we find that anthropogenic forcing has had a detectable
and attributable influence on the latitudinal pattern of large-scale
precipitation change over the part of the twentieth century that we
were able to analyse. Our best estimate of the response to anthro-
pogenic forcing suggests (Fig. 1b) that anthropogenic forcing has
contributed approximately 50–85% (5–95% uncertainty) of the
observed 1925–1999 trend in annual total land precipitation between
40uNand 70uN (62mmper century), 20–40%of the observed drying
trend in the northern subtropics and tropics (0u to 30uN; a decrease of
98mm per century) and most (75–120%) of the moistening trend in
the southern tropics and subtropics (0u to 30u S; 82mm per century).

METHODS SUMMARY
Data processing. Observed annual land precipitation anomalies were obtained
by subtracting the 1961–90 climatology from station monthly precipitation
amounts21 and summing monthly values if the year had at least 7months with
data. All other years were treated as missing. Annual values were gridded by
averaging station values within 5u3 5u latitude–longitude grid boxes. Zonal
mean precipitation anomalies were obtained by averaging available annual
anomalies within each latitudinal band.
Model data were first transferred to the same 5u3 5u latitude–longitude grid

as were the observations and subsequently processed in the same way as were the
observations, including ‘masking’ missing values so that model values are avail-
able at the same times and places as the gridded observations.
Detection and attribution. The ‘optimal fingerprint’ method assumes that the
observed trends y (organized as a vectorwith one entry per latitude band)may be
represented as the sum y5Xb1u of scaled simulated responses to external
forcing, or signals X (a matrix with one column for each signal considered)
and natural internal variability u. To account for uncertainty in the modelled
response patterns, we used generalized total-least-squares23 to estimate the
scaling factors b. Signals were estimated by averaging trends in all available
model runs in the same forcing group. Two independent estimates of internal
variability covariance, ĈN1 and ĈN2, which were needed for optimization and
scaling factor estimation2, were estimated from model simulations as in other
studies1–12.

We computed trends in 10u latitude bands to reduce the effects of internal
variability. Our detection analysis is conducted in a subspace spanned by the first
five leading empirical orthogonal functions of the estimated model covariance.
The joint influences of ANT andNAT signals in observations were inferred from
two-way regressions using combinations of two signal patterns from the multi-
model ALL, ANT and NAT4 ensembles.

Full Methods and any associated references are available in the online version of
the paper at www.nature.com/nature.
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METHODS
Detection and attribution. Signals were obtained by averaging results from
multi-model ensembles. This has been found to improve estimates of surface
temperature response to anthropogenic forcing4,26, suggesting that the bias in the
multi-model mean is smaller than individual model biases31.
The observed precipitation record is too short to provide estimates of ĈN1 and

ĈN2 and may be affected by the response to external forcing. Internal climate
variability is therefore estimated, as outlined below, from model simulations as
in other studies1–12. More details are given in the Supplementary Information.
The covariance matrices were estimated from independent parts of a 1,700-

year control simulation (which was divided into 17 non-overlapping 100-year
samples) performed with model HadCM3, for which there is no year-to-year
change in external forcing, and from variability between members in ensembles
of forced simulations. The latter consist of a total of 9,200 years of climate
simulation with ALL, ANT or NAT forcing in ensembles of three to nine 100-
year simulations (Supplementary Table 1).
For the 75-year detection analysis, trends were estimated from the last 75 years

of the 100-year samples of model output that were masked to mimic the avail-
ability of gridded observations during 1925–99. For the 50-year detection ana-
lysis, we split each of the 100-year chunks of data into two 50-year periods, and
computed trends in each 50-year data segment that was masked to mimic the
1950–1999 availability of gridded observations. We then partitioned the control
and forced simulations in such a way that every model is represented in the
covariance matrix estimates ĈN1 and ĈN2. In the case of ensembles with an
odd number of members k, we assigned (k1 1)/2 members randomly to either
sample N1 or N2, and the remaining members were allocated to the other
sample; the allocation of the larger number of members was alternated between
models to ensure that N1 and N2 contain the same number of members in total.
In the case of ensembles with an even number of members, half of the members
were randomly allocated to each sample. Overall mean trend patterns were
removed separately from the control, ALL, ANT and NAT simulations in each
sample N1 and N2, and the residual trends were used to estimate CN1 and CN2.
The covariance estimates were appropriately adjusted to reflect the fact that
ensemble mean trend patterns were removed from individual ensembles.
Because model data for estimating the covariance matrix were limited, and

because optimal detection involves inversion of the estimated covariance
matrix23,24, we had to conduct our detection analysis in a reduced dimension
space. This was accomplished by first calculating trends in 10u latitude bands to

reduce the effects of internal variability. The spatial pattern of trends at
this coarser resolution preserves most of the structure seen in 5u bands.
Dimensionality was further reduced by retaining only the first five leading
empirical orthogonal functions of the estimatedmodel covariance.Model-based
and observation-based estimates of precipitation variability are more often con-
sistent with each other in this reduced dimension space according to a standard
test25, indicating that this space retains only the more robustly simulated aspects
of rainfall change, and that the covariance matrix is robustly estimated. This
truncation preserves the spatial pattern of trends, including key physical aspects,
and retains more than 76% of signal variance (see Supplementary Information).
It is of concern that model simulated precipitation variability is generally lower
than observationally based estimates. However, the latter are probably biased
high owing to sampling noise in the observations (see Supplementary
Information).
The optimal detection method described previously was used to determine

whether the responses to ALL, ANT and NAT signals are individually detectable
in observed trends in zonal mean precipitation. However, two-signal attribution
analyses must be used to separate the contribution from natural and anthro-
pogenic forcing to observed trends. Thus the joint influence of ANT and NAT
signals in observations was inferred from two-way regressions using combina-
tions of two signal patterns from the multi-model ALL, ANT and NAT4 ensem-
bles. Relatively few NAT only simulations were available for our analysis, so the
most robust two-signal analysis results were obtained using the ALL and ANT
ensembles; the contribution from ANT and NAT separately could be derived
from a linear combination of the scaling factors of ALL andANT2. Scaling factors
estimated jointly in two-signal detection analysis were generally correlated (see
Supplementary Information).
The methods used to make inferences about the scaling factors b and the

residual consistency assume that the natural internal variability u is gaussian-
distributed. While daily precipitation is far from gaussian, the Central Limit
Theorem indicates that the large-area averages of annual mean precipitation
anomalies that are used in our analysis should nevertheless be approximately
gaussian. Repeating our analyses using transformed annual anomalies assuming
a gamma distribution for the annual anomalies produced very similar detection
and attribution results.

31. Kharin, V. V., Zwiers, F. W. & Zhang, X. Intercomparison of near-surface
temperature and precipitation extremes in AMIP2 simulations, reanalyses, and
observations. J. Clim. 18, 5201–5223 (2005).
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